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ABSTRACT 
 

Increasingly massive datasets produced by simulations beg the 
question How will we connect this data to the computational and 
display resources that support visualization and analysis?  This 
question is driving research into new approaches to allocating 
computational, storage, and network resources. In this paper we 
explore potential solutions that couple system resources in new 
ways.  

Examples of what we mean by resource-coupled computations 
abound. For example, remote visualization is an activity that may 
couple data and large computation resources at the shared facility 
to client software and display hardware at the remote site. In situ 
analysis and visualization contemporaneously merges simulation 
and analysis onto the shared resource of the supercomputing 
platform. Co-analysis approaches seek to directly couple 
simulations running on a primary supercomputer to live analysis 
running on an optimized visualization and analysis platform over 
a high-performance network.  

Consequently, we are working on a systems approach to modeling 
the end-to-end activity of extracting understanding from 
computational models. In this paper we present our methods and 
results from experiments. 

Categories and Subject Descriptors 
C.0 [Computer System Organization]: General – modeling of 
computer architecture, system architectures. C.2 [Computer 
Systems Organization]: Computer-communication networks – 
data communications. C.4 [Computer Systems Organization]: 
Performance of systems – design studies, measurement 
techniques, modeling techniques, performance attributes. D.4.8 
[Operating Systems]: Performance – measurements, modeling 
and prediction. 

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
High-performance computing, data intensive computing, coupled 
computations, simulation. 

1. INTRODUCTION 
Large-scale computational science requires substantial hardware 
resources for simulation, data storage, and data analysis. Current 
systems supporting National Science Foundation (NSF) and 
Department of Energy (DOE) scientific programs include 
configurations at the National Center for Supercomputing 
Applications (NCSA), the Texas Advanced Computing Center 
(TACC), the National Institute for Computational Sciences 
(NICS), Argonne National Laboratory (ANL), Oak Ridge 
National Laboratory (ORNL), and Lawrence Berkeley National 
Laboratory (LBNL). The massively parallel computational 
components are supported by parallel file systems capable of 
moving several tens of gigabytes per second and are connected to 
global backbone networks that can carry about a tenth of that 
traffic. 

The problem of analyzing datasets produced by large simulation 
has spawned a number of ideas. The traditional approach to data 
analysis and visualization, namely, postprocessing, finds its data 
in local or networked storage, perhaps distributed widely across 
many storage resources. Postprocessing is what is commonly 
thought of when discussing visualization and analysis. 
Postprocessing happens after the simulation has completed or at 
least after data has been written to disk. Much of the visualization 
research done within the community is focused on use within a 
postprocessing application. The postprocessing stage in the 
pipeline has been packaged into many well-known environments 
such as Matlab, Mathematica, and R, as well as more HPC-
oriented environments such as VisIt [http://www.llnl.gov/visit/] 
and ParaView [http://www.paraview.org/]. But issues of data 
scale and the cost of staging the data to and from disk between 
creation and analysis steps have prompted research into other 

 
Figure 1. Live streaming of 10 Gbps from Argonne National 
Laboratory to Portland, OR, at Supercomputing 2009. 
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strategies. In situ approaches take the view that the data will never 
be more available than it is at the moment it is created by the 
simulation. Other research aims to insert analysis in tandem with 
the I/O operations required to save data to disk. With tightly 
coupled computational systems one can consider real-time co-
analysis with data shipping across the high-performance 
interconnect. 

 
We define in situ analysis as analysis and/or visualization code 
that runs as part of the simulation code at the same time as the 
simulation. This approach is receiving much attention within the 
high-performance computing community as perhaps the only way 
to analyze future-generation large-scale datasets. An example of 
in situ analysis can be found in the efforts Yu et al. [10], and an 
overview is presented by Ma [8]. Also relevant to the algorithm 
performance piece of the in situ problem is the long train of work 
in scaling parallel visualization algorithms. These analyses and 
algorithms have not yet been applied in situ, however; and much 
work remains to be done to characterize co-resident performance 
with a running simulation.  

We define co-analysis as processing that runs in parallel with the 
simulation but not necessarily on the same resources or even at 
the same site. CUMULVS [6] is an example of a co-analysis 

approach that provides means for interacting with and steering a 
running parallel simulation. LambdaRAM [5][9] enables data 
coupling between clusters interconnected via high-speed optical 
networks in order to facilitate co-analysis. LIVE [1] provides a 
means for connecting to a running simulation in order to monitor 
or analyze data generated by the application in real time. Also 
related is work aimed at connecting separated resources [2][3][4] 
or work such as the Model Coupling Toolkit, which enables 
construction of multiphysics, parallel coupled models [7]. 

Figure 2 shows many of the current and envisioned pipeline 
configurations that might support high-performance coupled-
resource computation. The nominal pipeline configuration in 
Figure 2(a) illustrates the case wherein the simulation stores 
results to disk and an analysis application works from disk. 
Ideally, all communication is carried out over very high speed 
switch fabric. When the simulation process can communicate 
directly over the facility network with nominal bandwidth of 
terabits per second, advanced analysis can be performed on 
optimized hardware, as depicted in Figure 2(b). The desirable but-
challenging configuration shown in Figure 2(d) enables high 
performance computational science on resources spread over a 
wide-area network. A demonstration of this, shown in Figure 1, is 
described later in the text. 

Two main questions drive the research:  

• Where in the pipeline is the right place to do analysis 
and visualization? 

• Will these capabilities improve time-to-discovery? 

These lead to a number of corollary questions that focus on 
particular scenarios, hypotheses, and issues, including the 
following: 

• Is it better to carry out some of the analysis in situ with 
the simulation or to move the data to a separate analysis 
process? 

• What are the circumstances where we can speed 
application by offloading I/O quickly, and how often do 
they arise? 

• Under what circumstances can wide-area co-analysis be 
effective given the lower bandwidth of external 
network? 

The effort described in this paper touches many portions of the 
computational science pipeline. Before we can answer these 
bigger, more integrative questions, we need to understand the cost 
of performing data analysis or partial analyses at the various 
points in the pipeline—in terms of time, bytes, and dollars. How 
we are attacking this question is the subject of this paper. 

To get answers, we are designing models at a coarse granularity 
that enable high-level assessment of opportunities and potential 
benefits. In the following sections, we present our preliminary 
efforts to gather and analyze data from a number of sources before 
digging into building models, designing experiments, and testing 
measurements against models. 

2. Multipronged Approach 
In this section we describe our work in progress to measure, 
characterize, and model current supercomputing resources in 
order to understand how future ultrascale systems will be used. 

(a)  

(b)  

(c)  

(d)  

Figure 2. Some of the many useful computational pipeline 
configurations: (a) nominal pipeline configuration, (b) 
simulation process communicates directly over the facility 
network with optimized analysis hardware, (c) monitoring 
clients attached to the pipeline, and (d) high-performance 
computational science on resources spread over wide area 
network. 



We target the idealized configurations of the computational 
pipeline shown in Figure 2 in terms of the basic properties of the 
hardware, application software, and analysis software components 
of the system. 

2.1 About Applications  

Understanding an application’s run-time behavior is critical in 
order to gain insight into when and where analyses might be 
performed. Key parameters include the application’s 
computational requirements, its memory usage, and the data 
movement patterns. 

The amount of data emitted by a given application per time step, 
per data type, and/or per checkpoint cycle will provide the basis 
for estimating time-dependent memory requirements for our 
models. 

We want to understand how in situ approaches compare to co-
analysis or how much automatic analysis and of what sort can be 
overlapped with the running simulation. For this investigation we 
will need estimates of how expensive the relevant computations 
(both in the simulation and in the analysis) are on each of the 
computational resources.  

A key determinant of the level of success achieved by these 
methods will be the extent to which data can be moved quickly 
from the simulation to the analysis. This will rely on the amount 
of raw network bandwidth available and the effectiveness with 
which it is used. 

For some application scenarios, latency will be an important 
parameter in our models; we are thinking here of interactive 
applications or those with some monitoring. Its importance in 
other scenarios will depend on the granularity of the elements in 
the data stream and to what extent data must be reorganized 
across the cluster nodes. 

Coarse-grained data patterns will provide critical insight into 
which parts of the data stream are most constraining and where 
opportune windows provide space for overlapped analysis. We 
will capture aspects of the spacing, data bulk, and data rates in our 
models. 

2.2 About Resources 

Large-scale scientific applications have demonstrated scalable 
performance on today’s architectures. However, based on trends 
extracted from available market literature (as listed 
in Table 1), we can expect that future architectures 
will require that today’s applications and middleware 
scale their performance in ways previously 
unexplored. Key trends in future architectures 
include the large number of processing cores on a 
chip as well as the increase in the network bandwidth 
throughout the various subsystems. Energy 
efficiency is another key criterion listed in Table 2 
for future systems. Thus, a critical component for 
scalable performance will be the development of new 
techniques for efficient utilization of end-system 
architectures and resources. 

For our models and experiments to be most 
beneficial, we will organize them around a set of 
generalized architectures including mixtures of high-
performance computing platforms, visualization and 

analysis clusters, parallel file systems, high-performance 
switching interconnection hardware, and wide-area networks. This 
approach will enable us to consider tightly coupled systems as 
well as loosely coupled federations of systems. 

 

 

The primary resources considered in the model will include the 
state-of-the-art HPC systems currently deployed, in order to (1) 
allow us to test the widest range of performance parameters, (2) 
prototype useful solutions to current problems, and (3) make more 
accurate extrapolations to future hardware systems. The resources 
include those at the Argonne Leadership Computing Facility 
(ALCF). The principal components of the system to be used as a 

Table 1. Trends in bandwidth. Data compiled from the 
released products of various hardware vendors and their  
future projected roadmaps. 

Bandwidth Trends (Gbps) 2007 2009 2011  
Disk Drive  1 3 6 

Network Interface 10 30 100 

Memory 100 40 384 

GPU Memory 500 1000 2000 

Processor Interconnect 51 120 200 

Wide Area 10 40 100 

 

Table 2. Trends in node architecture. Data compiled from 
the released products of various hardware vendors and 
their  future projected raodmaps. 

 CPU GPU 
 2007 2009 2011 2007 2009 2011 

State of the Art Opteron Nehalem Larabee Nvidia 
8800 

ATI 
4870 

ATI 
 6800 

Core per 
Processor 

4 8 12 256 800 4000 

Computational 
Efficiency  

GFlops / Proc 
16 54 200 256 1000 4000 

Energy 
Efficiency 

GWatts / Proc 
0.16 0.5 2 2.5 10 40 

 

 
Figure 3. Architecture of the coupled resources in the Leadership 
Computing Facility at Argonne National Laboratory. 



generic testbed are shown in Figure 3. Intrepid is a 160K core 
IBM Blue Gene/P system with peak performance of 557 TF, 80 
TB local memory, and 640 I/O nodes each with 4 cores, 
connected to the switching interconnect with aggregate 6.4 Tbps. 
Eureka comprises 100 servers with 800 Xeon cores, 3.2 TB 
memory, and 200 nVidia Quadro FX 5600 GPUs. Eureka is 
connected to the switch with 100 links at 10 Gbps each. The file 
server is connected to the switch with 128 links at 10 Gbps each. 

Models and test results on this system will provide insight into 
performance of the co-analysis techniques to be studied for a 
range of current systems, as well as a handle on how future 
systems might perform. First, the high-end system is in some 
sense a proxy of more modest systems of the future. The terabit 
bandwidth of the switching fabric will represent global backbone 
bandwidths in coming years. Second, experiments run on this 
system can be throttled at various points to reflect expected 
performance for a range of currently available systems. 

2.3 About Analysis 

Our goals in understanding the run-time behavior of analysis and 
visualization codes is analogous to our interest described in 
application codes. 

Several widely used data analysis and visualization applications 
serve the scientific HPC community. These include VisIt and 
ParaView, which can execute large-scale parallel visualizations; 
Matlab; R; and a number of more specialized, domain-tailored 
packages. Some researchers find that their analysis and 
visualization can be done only by customized applications. These 
are sometimes implemented by using high-level toolkits such as 
vtk (http://www.vtk.org/), the visualization toolkit that is the basis 
for both ParaView and VisIt. An example of an even more 
homegrown code is our own volume-rendering application, vl3, 
which exploits GPU hardware to speed evaluation and 
accumulation of transfer function modulated data along cast rays. 
This is accomplished with custom GPU code.  

We seek to understand how these examples behave on a range of 
platforms. Hence, we will use modeling techniques similar to 
those used in science application codes. 

3. Current Efforts 
Here we describe our current works in characterizing resource 
usage by science and analysis applications, detailed performance 
and scaling properties of algorithms, hardware performance 
characteristics, and performance of computational science on 
widely distributed resources. 

3.1 Footprint Measurements 

We want data about the properties and mix of jobs running on 
Intrepid and Eureka, including data about how these jobs use the 
storage system. From this data we will be able to understand 
better what kinds of footprints typical and extreme science 
problems leave on the mix of resources in a high-performance 
computing facility: simulation cycles consumed by runs and 
campaigns, amount and creation patterns of data produced by 
simulations, postprocessing access patterns for analysis and 
visualization, and cycles consumed in data exploration and 
reduction. This data is not widely available and has not been 
systematically collected and studied. 

Toward this goal, we have collected into databases information 
available from system logs on Intrepid and Eureka. The 
automating scripts for this ongoing metadata collection are in 
place and operating. We are mining this information for statistics, 
trends, and norms to help guide our modeling and design 
activities. 

 
We have begun work to understand how one simulation using a 
multiphysics code might benefit from a co-processing approach. 
Consider routine simulations of Type 1a supernovae currently 
being run on Intrepid as part of the DOE INCITE program. An 
example of coarse-grained data patterns is shown in Figure 4. The 
code includes modules for gravitation, nuclear chemistry, and 
magnetohydrodynamics. It is highly configurable and can be used 
to solve problems from laboratory-scale to cosmology; hence, 
performance characteristics vary greatly from problem to 
problem.  

These simulations are generally run over a period of several days 
to a week in twelve-hour jobs. Each run is marked at intervals of 
about 90 minutes by a checkpoint that enables the job to be 
restarted from that point in the event of system failure; it also 
provides much of the data used in the subsequent analysis. In 
addition to these checkpoint files, the application writes particle 
and plot files containing different kinds of data. Figure 4 shows 
the pattern of these data-writing operations.  

Table 3 fills in the details of actual file sizes and numbers for each 
of the file types generated. In this case the particle file writes take 
a disproportionate fraction of the I/O time despite the relatively 
small fraction of the dataset invested in them. These blocking I/O 
operations take as much as 30 percent of the total execution time. 
The numerous particle files generate 500 GB over the course of 
the simulation and take a disproportionate fraction of the overall 
I/O time but are amenable to optimizations not yet implemented in 
the simulation. The plot files contain the bulk of the data written 

 
Figure 4. Example showing the high level I/O pattern of one 
particular astrophysics simulation. Three separate types of 
files are written at different intervals over the course of the 
simulation cycle: particle files, plot files, and checkpoint files. 
Shown is one cycle ending with a checkpoint. 

Table 3. Example data footprint. 

File Type File Size #files #files Data Size 
  / Run / Sim  

Particle ~ 131 MB ~ 500 5000 500 GB 

Plot ~ 13 GB 40-90 800 10 TB 

Checkpoint  ~ 42 GB 5-10 100 4.2 TB 

 



during the simulation, some 10 TB, while the checkpoint files 
produce almost a third of the total.  

From this information we see several opportunities that might be 
exploitable. First, to the extent that the I/O takes more time than 
available bandwidth would imply, we might improve overall 
application execution time if we can offload the I/O to another 
compute resource. Second, this same system might provide value 
added by overlapping analysis with the running simulation.  

3.2 Application Performance Measurements  

We are studying the performance characteristics of vl3, mentioned 
briefly above, because it can take unique advantage of the GPU. 
Hence, we can study in detail the possible advantages of 
specialized hardware acceleration with purely software rendering. 
By modeling it and testing in on Intrepid (without the aid of the 
acceleration) and on Eureka, we gain insight into the tradeoffs 
between hardware and software execution. We have instrumented 
the code using the same algorithm without the benefit of hardware 
acceleration.  
 
The parallel program casts rays through a very large data volume, 
evaluating a transfer function as it accumulates translucent 
coloration depending on the sampled data values. Compositing the 
results from all processors into a single image requires data 
exchange over the network. The resulting frame can be written to 
disk or sent to a remote display system by using as many parallel 
streams as necessary. 
 
To date, we have conducted a number of experiments with vl3. 
For example, we have performed scaling measurements on Eureka 
using the GPU acceleration of the ray casting with 128 processes 
running on 64 nodes. On this machine we have been able to 
render data cubes as large as 6K on a side. We have also 
performed scaling measurements with vl3 on Intrepid, casting 
rays in software. Furthermore, we have run vl3 in an interactive 
test of high-performance rendering from a remote site over a 
wide-area network (described below). 

3.3 Internal Network Experiments 

We are also characterizing performance of the new and 
unconventional data path between Intrepid and Eureka. Whereas 
both machines routinely exercise the path to the file servers in the 
course of conventional parallel and serial I/O, the switching fabric 
that enables these paths also offers the possibility for processes on 
Intrepid to speak directly with processes on Eureka. Preparatory to 
building and testing new APIs to enable these high-speed 
communications, we are testing parallel streaming along that path.  

Figure 5 depicts the network architecture for communication 
between a Blue Gene/P compute node and a data analysis node. 
There are 64 compute nodes in a partition and a single BG/P I/O 
node (ION) for each partition. The compute nodes are connected 

to the ION via a tree network with a bandwidth of 6.8 Gbps 
between the compute nodes and the ION. The ION is connected to 
the analysis node on a 10 Gbps network.  

 

We have conducted initial bidirectional streaming experiments 
between the ION and analysis node. From Figure 6 (top), we see 
that as we increase the number of streams, the achievable 
throughput increases. Increasing the streams beyond 4, however, 
does not yield any significant improvement and could actually 
lead to performance degradation because of the contention 
between the various streams.  

In order to stream data from the compute node to the data analysis 
nodes, the compute node kernel forwards the system calls to the 
I/O node. The ION then forwards the data onto the analysis node 
using the CIOD daemon on the ION. As seen from Figure 6 
(bottom), we are able to sustain a maximum bandwidth of 3.6 
Gbps between a compute node partition and a data analysis node. 
The approach results in 52% network utilization and is limited by 
overhead of the forwarding in the ION.  

Figure 7 depicts the performance of streaming as we scale the 
number of Blue Gene nodes from 128 nodes (512 cores) to 4096 
nodes (16K cores). Note the linear scaling in the performance of 
streaming with the number of nodes. We are able to sustain 170 

 
Figure 5. System setup for the internal network experiments. 

 

 
Figure 6. Results for streaming between Intrepid (BG/P) 
and Eureka. At top are results in each direction between a 
single BG/P ION and a Eureka node (DA). At bottom are 
the results from a BG/P compute node (behind the ION) 
to a Eureka node. 



Gbps on 4K nodes. This would enable one to stream the 42 GB 
checkpoint data of the astrophysics application example from 
Intrepid to Eureka in 2 seconds, much faster than current time 
required to write the same data from Intrepid to storage. 

 

3.4 Wide Area Experiments 

And, finally, we are measuring and testing scenarios like that 
introduced in Figure 3(d). Figure 8 lays out some of the 
particulars of a recent test in which large datasets produced by a 
simulation run on the Kraken supercomputer at the National 
Institute for Computational Science at the University of Tennessee 
was transferred to Argonne National Laboratory via a 10 Gbps 
higher speed network over ESNet. They were then rendered at 
interactive rates on the Eureka cluster at ANL and streamed live 
to a large tiled display on the Supercomputing 2009 show floor in 
Portland, OR. 

Each simulation timestep created a 4K by 4K by 4K uniform grid 
with several model variables in each of these 64 billion cells. One 
four-byte variable, the density of ordinary matter in this 
cosmology simulation, represented 256 GB of data. The rate that 
these single time step chunks of data were produced by the 
simulation was far slower than interactive – numbering several 
frames per day. With two 10 Gbps links between Tennessee and 
Illinois, that single timestep of one variable would take at least 
200 seconds. 

We had much better results using available bandwidth to stream 
rendered results. For this experiment we added multi-streaming to 
our vl3 rendering application. The 4K by 2K rendered interactive 
stream was split into smaller tiles and shipped to Oregon over a 10 
Gbps link. The link was generally fully subscribed by the multi-
stream while vl3 generating a few frames per second of live high-
resolution volume renderings. Although the control stream for 
interaction was actually created at Eureka, implementing a light 
control stream from the remote site would not be difficult. 

4. Conclusions 
In this paper we have described a range of circumstances of 
critical interest to ultrascale computing which rely on efficient 
collaboration between processing subsystems. We’ve dubbed 
these resource-coupled computations. In situ methods couple 

simulation and analysis in real time on a single shared compute 
node. Remote visualization couples high-performance compute 
and data resources to remote display clients. Co-analysis couples 
two high-performance compute resources in real time.  

We described details of one application’s dataset footprint to 
illustrate opportunities for better overlapping of simulation and 
I/O, offloading I/O to a co-processing platform, and real time data 
analysis through co-processing. We then discussed several 
components of our measurement effort – measurements of coarse 
grain characteristics of simulation and analysis jobs running on 
ALCF resources, synthesis of these measurements into project 
footprints, early results from new streaming experiments that 
connect the BG/P simulation resource to the analysis and 
visualization cluster, and wide-area experiments.  

Several opportunities may become feasible with co-processing 
enabled by fast data transfer from the simulation to a high-
performance analysis cluster: mapping the Intrepid output data 
flow to Eureka may speed up some applications; offloading data 
organization and disk writes; transparent (and relatively free) co-
analysis; and data compression. As an accelerator and co-analysis 
engine, a companion cluster such as Eureka might be considered 
inexpensive at only 1-2% of the cost of a large supercomputer 
such as Intrepid. 

The work described in this paper aims to provide a system level 
understanding of data exchange between collaborating 
computational resources. It is informed by real computational 
workloads across resources spanning the entire scientific 
workflow. Our hope is to identify and develop new methods for 
designing workflows that more effectively utilize available 
computational resources by optimizing the end-to-end process. 
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